
An Internet Collaborative Environment for Sharing Java Applications

H. Abdel-Wahab and B. Kvande
Department of Computer Science

Old Dominion University
Norfolk, Va 23529

fwahab,kvandeg@cs.odu.edu

O. Kim and J.P. Favreau
Information Technology Laboratory

National Institute of Standards and Technology
Gaithersburg, Md 20899

fokim,favreaug@snad.ncsl.nist.gov

Abstract

In the Internet community there is a strong demand for
platform-independent collaboration software. Java is de-
veloped with the major design goals of being a platform-
independent, and Internet-oriented programming language.
In this paper we show how a group of Internet users can
share single-user Java applications for synchronous collab-
oration. Our approach is based on replicated tool architec-
ture in which each participant runs a copy of the application
and the activity of each user is multicast to all the partici-
pants in the conference. We have developed a system called
Java Collaborative Environment (JCE), on which the Java’s
Abstract Window Toolkit (AWT) is extended such that mouse
and keyboard events are intercepted and distributed among
all copies of the shared Java application. In addition we
provide an infrastructure and a simple interface for session
management and floor control.

1 Introduction

Most current existing collaborative systems require the
participants in a conference to use the same window system.
For example, XTV [1, 2] and Suite [4] are based on the X
window system and require that the participant’s machines
run the X server. Other systems such as WTV [3] have tried
to replicate the functionality of XTV replacing the X win-
dows with Microsoft Windows. Ideally, each participant in
a collaborative conference should be able to use whatever
platform he or she prefers. For example, some may use PCs
running MS Windows 95. Others may use workstations
running different version of UNIX and X windows, yet oth-
ers may use PowerPC Macintoshs. Before the introduction
of Java, this sort of collaboration was enormously difficult
to achieve. Java programs are compiled to an architecture
neutral byte-code format and thus can run on any system
that implements a Java virtual machine and its abstract win-
dow system. Java provides a fortuitous opportunity for the

Computer Supported Cooperative Work (CSCW) [5] com-
munity to overcome a barrier which hitherto hindered the
wide spread use of collaboration technology.

To overcome the platform-dependency problem for appli-
cation sharing in heterogeneous platforms, NIST (National
Institute of Standards and Technology) and ODU (Old Do-
minion University) are jointly conducting a research project
to investigate mechanisms for sharing multimedia applica-
tions among participants on not only heterogeneous win-
dowing and operating systems, but on different hardware
platforms.

We have developed mechanisms to intercept, distribute
and recreate the user events that allow single-user Java appli-
cations to be shared among conference participants. These
mechanisms can be run transparently on any system im-
plementing Java. The mechanisms incorporate the services
of network communications, conference management and
floor control management. The network communications
services include distribution of the data among conference
participants; conference management includes joining and
leaving a session; and floor control includes participant’s
control and interaction with the application during a ses-
sion. In this paper, we refer to the prototype which has
been developed as JCE, an acronym for Java Collaborative
Environment.

2 JCE System Architecture

Figure 1 depicts the overall JCE system architecture, and
the relationship and communication paths among all pro-
cesses of the system, for a given conferencing session.

The Java applications denoted as Java App 1 (and 2) in
Figure 1 are not part of the system. They are single-user
applications developed using the collaborative package we
developed and discussed later in Section 3. Participants
can invoke one or more applications in a given conference.
Our model is based on the replicated architecture [6] in
which an instance of each application runs locally at each

Host A

Session Server
 (Distributor)

participants
To/from all other

Java App 1

Java App 2

Host B

Session Control Manager

Java App 1

Java App 2

Session Control Manager

Event Controller

Event Controller

collawt

collawt

Floor Flag

Consumer for app2

Sender

Sender

Consumer for app1

Consumer for app2

Consumer for app1

Floor Flag

Figure 1. Overall System Architecture

participant’s site and the activity of each user is distributed
to all the participants in a conference.

As shown in Figure 1 JCE consists of three components:
the Session Control Manager, the Event Controller, and the
Session Server.

The Session Control Manager (SCM) provides the user
with a graphical interface offering the following options: to
call, join or leave a session; to start applications; and to
request or release a floor. Each participant is given an SCM
process that exchanges control information with the Server
for the duration of the session.

The Event Controller is the core of the collaboration
mechanisms. It is composed of two processes: the event
Sender and Consumer. When an application is started an
Event Controller for the application is automatically instan-
tiated by the Session Control Manager. When two or more
applications are shared, two or more Consumers are created
as shown in Figure 1. The Sender is declared as a static (i.e.,
class) method of the Event Controller, so only one Sender
method exists for all applications. The Sender method first
checks the intercepted event to determine whether or not it
should be sent to the Session Server, since events originating
from shared applications are always forwarded. The Con-
sumer processes receive events redistributed by the Session
Server from other participants, and post them to the local
instance of the application as if they were originated locally.
This process is completely transparent to the application,

i.e., the application is unaware that it is being shared.
The Session Server in Figure 1 provides three distinct

functions: distribution of all messages to all participants;
group management for a given session, including joining or
leaving a session; and server floor control management.

3 Collaborative AWT

We have developed a mechanism to intercept all the user
interface events and send them to other participants in the
conference. All the GUI components defined in the standard
java.awt package version 1.1 [8] are extended in JCE to
implement this mechanism. The extended package is called
collawt.

For example, here is the class Button in collawt showing
the overridden method processEvent, with the interception
statement shown in boldface.
public class Button extends java.awt.Button f

public void processEvent(AWTEvent evt) f
if (EventController.sender(evt)) f

if (evt instanceof ActionEvent) f
super.processActionEvent((ActionEvent)evt);
return;

g

super.processEvent(evt);
g

gg

public static boolean sender
(java.awt.AWTEvent evt) {

//Check if event came from network.
if (evt instanceof CollEventFromNet)
if ((CollEventFromNet)evt.getFromNet())
return true;
//don’t send/post if floor isn’t yours
if ((selFloorChoice!=PacketDef.FLOOR_OFF)

&& (!floorFlag))
return false;
//create/send packet based on event type.
if (evt instanceof ActionEvent)
sendActionEvent((ActionEvent)evt);

else if (evt instanceof MouseEvent)
sendMouseEvent((MouseEvent)evt);

... etc.. handle other events similarly

return true;
}

Figure 2. Sender Method

In this class the default event-handler, the Compo-
nent.processEvent method, is replaced in every GUI compo-
nent that produces user events. To override this method, all
the GUI components in collawt are subclassed from their
corresponding components in java.awt. Every widget
inherits from its corresponding widget in java.awt and
overrides the processEvent method. The new imple-
mentation of this method intercepts the events, and then
calls the sender method in EventController object before it
gives it to the original event-handler.

When the Event Controller receives an event, the event
is rebuilt and dispatched to the target component. In the
java.awt package version 1.1 [8], events are represented by
a hierarchy of event classes, each of which is defined by the
specific event type (e.g., KeyEvent, ActionEvent and so on)
or related group of event subtypes (e.g., MouseEvent repre-
sents MouseUp, MouseDown, MouseDrag and etc). All the
event type classes defined in the java.awt package are also
extended in collawt, which are used to flatten and recre-
ate user events that are sent and received, respectively. The
dispatching of the received events to the corresponding local
components is completely transparent to the application and
looks like a normal events originating from the user.

4 Event Handling

When a user interacts with a GUI component in the inter-
face of an application, the events are intercepted by the com-
ponent’s event-handler processEvent as explained in the pre-
vious section. This method calls the EventController.sender
method which checks whether the event is from the local

public void consumer() {
while (true) try {
ReadEvent(packet);
// locate the target component.
target = getComponent(packet);
evttype = getEventType(packet);
// create event depending on type.
switch(evttype) {
case MouseEvent:
event = new CollMouseEvent(packet);
break;

case KeyEvent:
event = new CollKeyEvent(packet);
break;

..etc.. create other event objects based on types.
}
// dispatch the event to the source object.
((Component)target).dispatchEvent(event);

}

Figure 3. Consumer Method

user and sends the event to the session server for distribu-
tion. The event is converted to a string representation before
it is sent to the network (see Section 4.2).

The events received from the network are consumed
to the corresponding target component by the EventCon-
troller.consumer method, a thread waiting in an infinite loop
receiving packets from the network. The received events are
reconstructed and dispatched to the correct target component
of the application. When an event is posted, the component’s
event-handler processEvent is called as if this were a local
event generated by the user. Since this method calls Event-
Controller.sender method, the received event should not be
re-sent on the network. The technique developed to prevent
this infinite loop of sending the same event will be described
in the Section 4.3. Figures 2 and 3 show snippet of code
from sender and consumer methods.

4.1 Component Identification

In Java, a GUI component has no explicit identity. To
be able to identify the components of an application, an
identification (CID) number is assigned to each component
when opening the application. The CID of the component
is sent along with the event when distributed. This CID is
then used to locate the target component for the event in the
receiving application.

When an application is opened, the hierarchy of com-
ponents of the windows contained in the application is tra-
versed and a reference to each component is inserted into
a vector. Since the components in the application are tra-
versed in the same sequence every time the application is

private static void build_component_tree
(Container root, Vector cVector) {

// count components contained in ’root’.
int components = root.getComponentCount();
for (int i = 0; i < components; i++) {

//get each component contained in ’root’.
Component c = root.getComponent(i);
//if it is container, get its components
if (c instanceof Container) {

build_component_tree
((Container) c, cVector);

}
//add component to vector
cVector.addElement(c);

}
}

Figure 4. Building Components Index Vector

opened, a component will be placed in the same position
of the vector and given the same CID in every replicated
instance of the application.

Figure 4 shows the method used to build that vector. In
this method, we rely on Java’s awt countComponents and
getComponent methods in Container class to traverse the
tree and construct the corresponding vector.

4.2 Flattening Events

Before an event is sent it has to be converted to a repre-
sentation suitable for transportation over the network. This
representation has to contain sufficient information for the
event to be easily reconstructed and posted to the correct
target component. Each collaborative event type class in
collawt contains a method that flattens an event to a string
representation to be sent out. The event is converted to a
packet where every field is interpreted as a string separated
by commas, which is fairly easy to parse and reconstruct at
the receiving application. A layout of a string representation
of events is shown below:

TopLevelWindowId j CID j EventId j Event-specific-info

4.3 Reconstructing and Consuming Events

For an event to be posted, the matching target component
in the receiving application must be located. The Toplevel-
WindowId and the CID are used to look up the vector con-
taining the application components. Once the target com-
ponent is located, an appropriate collaborative event object
CollEvent is created depending upon the event type and
then posted to the target component. (See Figure 3). When

a CollEvent is posted to the target component, the applica-
tion interprets it as if it was a normal local event. However,
a CollEvent received from the network should not be sent
back again. To differentiate the CollEvent and a normal
local events, we have defined the interface CollEventFrom-
Net. The interface contains methods that indicate whether
or not the event is received from the network. The collabora-
tive event classes in collawt implement the interface so that
EventController.sender method can check whether the event
captured is from the network (See Figure 2). The received
event is only dispatched to the target component for normal
processing and is not resent back to the network.

5 Session Server

The major functions of the Session Server shown in Fig-
ure 1 are:

1. To act as a distributor to multicast events among par-
ticipants and applications;

2. To provide session management such as joining or
leaving a session; and

3. To provide floor control for regulating access to shared
applications.

The distributor maintains a list for each application in use
and their current participants, and a queue for floor man-
agement. The list is used to distribute events from one
application to the other copies of the application. When a
user joins a session or opens a shared application, the server
establishes a TCP connection and creates a thread to serve
the connection. The packet format to exchange information
over the TCP connections is:

length j packet type j data

The values of packet type for session management and event
distribution are:

NEW SESSION Start a new session.
EC REGISTER Register a new application.
START APPLI Starts an application.
JOIN Join an existing session.
LEAVE Leave a session.
EVENT An event to be distributed.

The event distributor is implemented using two classes:
The TCPServer and the TCPConnection. The TCPServer
has a full overview of every client connected and registered
with the distributor. The class listens for connection requests
from clients, and constructs a new TCPConnection object
when a connection is requested. The TCPServer class also
registers and removes the clients as users of the application
groups, and most importantly it distributes events by call-
ing each TCPConnection object instructing them to send the

event to the client. The TCPConnection class sets up the
actual connection with the client and does the communica-
tions work. It initiates a thread waiting for data from the
client and processes the data received by taking action itself
or calling the appropriate method in the TCPServer class.
Figure 5 shows outline of the Java implementation of the
distributor.

6 Floor Management

In a collaborative environment, users should be able to
interact with shared applications in a controlled and orderly
manner. Most collaborative systems use the concept of
floor. The floor controls the user’s ability to provide input
and interact with the shared applications, i.e., the floor holder
has the right to “speak”. No more than one user at a time can
have the floor (unless the nature of the application allows
multiple participants to provide input without violating the
integrity of the shared workspace).

The floor management schemes currently implemented
in JCE are:

1. Request-and-Get policy: allows a requesting user to
immediately get the floor possiblypreempting the cur-
rent floor holder.

2. Reuest-and-Wait policy: allows the requester to get
the floor when becomes available. The current floor
owner must release it so that the requesting user can
get it. Floor requests are queued and granted in the
order of they are received by the Session Server.

3. No-Floor policy: allows any participant to interact
with the shared application.

The floor control GUI interface has buttons to change the
floor policy and for requesting and releasing the floor. It
addition the interface always display information about the
current floor holder.

The floor management is handled by the event distributor.
It distributes the floor to the requesting client and knows at
all times who is the current floor holder and what policy is
being used. The messages used for this purpose are shown
below:

REQUEST FLOOR User Requested the floor.
RELEASE FLOOR User Released the floor.
GRANT FLOOR User got the floor.
GIVE FLOOR User give up the floor.
FLOOR OWNER Who is the current holder.

The implementation of the floor management is divided
between the Distributor and the Session Control Manger
(See Figure 1). Floor enforcement is implemented by a
floor-flag in the Event Controller object. This flag reflects

public class TCPServer extends Thread {
protected ServerSocket serverSocket;
public TCPServer(int port) {
serverSocket = new ServerSocket(port);
start();

}
public void run() {
while(true) {
Socket sd = serverSocket.accept();
TCPConnection connection =

new TCPConnection(this, sd);
}

}
public static void main(String argv[]) {
TCPServer tcpServer;
tcpServer = new TCPServer(argv[0]);

}
}

public class TCPConnection extends Thread {

... Initilize local variables ...

public TCPConnection
(TCPServer server, Socket sd) {

this.server = server;
this.socket = sd;
in = sd.getInputStream();
out = sd.getOutputStream();
start();

}

public void run() {
int length = -1;
while (!done) try {
length = in.readInt();
if (length != -1){
packet = new Packet(readBytes(length));
processPacket(packet);

}
else done = true;
}

}
}

Figure 5. Distributor Implementation

the status of the floor. Whenever an event from a GUI
component is to be sent, this flag is checked. If it is enabled,
the event is distributed to others participants.

7 Conclusions and Future Work

The Java Collaborative Environment (JCE) presented in
this paper allows application sharing among diverse systems
such as UNIX workstation-based and PC Windows-based
systems. Through JCE any collaborative single-user Java
applications can be shared and by using the JCE simple user
interface, JCE participants may launch new shared appli-
cations and circulate the floor among themselves to control
and manipulate these shared applications.

Our next goal is to use JCE from java-enabled Internet
browsers such as the Netscape Navigator and the Microsoft
Internet Explorer. Due to some of the limitation imposed by
Internet browsers for security reasons, the participants may
not be able to perform certain basic functions such as saving
files on secondary storage. We would like to maximize the
functions that the participants can do through the Web and
perform the remaining functions using a parallel stand-alone
JCE interface.

Among the issues to be addressed in our future works
are: replication management, accommodating late comers,
scalability through the use of reliable multicasting, and the
integration of audio and video in JCE.

As we have explained in this paper, JCE is based on
replicated-tool architecture and among the problems asso-
ciated with this approach is replication management. Most
applications need to create or use objects during execution,
for instance, the environment variables, the initializationdot
files, and the files storing multimedia data. These objects
must be replicated and available at each site for the cor-
rect operation of the JCE system. There are three types of
objects to be replicated and managed: environment, opera-
tional and final objects. Before the invocation of each copy
of the shared application at each site, we must ensure that
all sites have identical operating environments.

To increase the system performance as the number of
participants increases we should use reliable multicasting
for data transport instead of the current server-based (star-
topology)TCP connections. If one participant needs to send
a message to all other participants, he or she sends it to the
server which in turn distributes it to all the participants, one
at a time, using the TCP connections. This may be ac-
ceptable if the number of participants is small (e.g., 4 or
5), but as the number of participants increases, the system
performance degrades and the session quality is reduced, as
measured by several parameters, such as view synchroniza-
tion. The use of reliable multicasting (e.g., RMP provided
by Berkeley/West Virginia [7]) should greatly improve both
the performance and the quality of session.

Beside shared applications, audio followed by video in
this order are important to support full and effective collabo-
ration among participants. Almost all PCs and Workstations
now have audio devices (microphone and speakers), though
they are often not compatible with each other and may use
different audio formats. Thus, our task here is to ensure
that all participants can talk and hear each other without be-
ing concerned about compatibility between their respective
devices.

References

[1] H. Abdel-Wahab and M. Feit, “XTV: A Framework for
Sharing X Window Clients in Remote Synchronous
Collaboration”, Proceedings, IEEE TriComm ’91:
Communications for Distributed Applications & Sys-
tems, Chapel Hill, North Carolina, pp. 159-167, April
1991.

[2] H. Abdel-Wahab and K. Jeffay, “Issues, Problems and
Solutions in Sharing X Clients on Multiple Displays”,
Journal of Internetworking Research & Experience.
pp. 1-15, Vol. 5, No. 1, March 1994.

[3] D. Adams, “WTV: An MS Windows based Collabo-
rative System”, Master’s Project Report, Department
of Computer Science, Old Dominion University, Dec.
1995.

[4] P. Dewan and R. Chouldhary, “A high-level and flexi-
ble framework for implementing multiuser interfaces”,
ACM Transaction on Information Systems, Vol. 10, No.
4, 345-380, (October 1993).

[5] J. Grudin, “Computer-Supported Cooperative Work:
History and Focus”, IEEE Computer, Vol. 27, No. 5,
19-26, (May 1994).

[6] R. Steinmetz and K. Nahrstedt, Multimedia: Comput-
ing, Communications & Applications Prentice-Hall,
1995.

[7] B. Whetten, T. Montgomery, and S. Kaplan, “A
High Performance Totally Ordered Multicast Proto-
col”, Theory and Practice in Distributed Systems,
Springer Verlag LCNS 938, 1994.

[8] Abstract Windowing Toolkit (AWT) package, Java De-
velopers Kit (JDK) Version 1.1 API, Sun Microsystems
Inc. Mountain View, CA 94043

